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A new model based on crystal-plasticity, crystallography, thermodynamics, kinetics and
statistics is developed for stress—assisted martensitic transformation. The model includes
the essential features of the stress—assisted martensitic transformation, such as: nuclei of
progressively lower potency are activated in the course of transformation, the martensite
phase appears in the form of thin plates, the parent phase exerts a higher resistance toward
the growth of a plate in the thickness than in the radial direction, the average plate size
decreases while the average plate aspect ratio increases with the extent of transformation,
etc. The model is implemented in the commercial finite element code ABAQUS/Standard to
analyze the evolution of martensite, materials texture and the resulting equivalent
stress—equivalent strain curve during the stress—assisted martensitic transformation under
different stress and strain states in a polycrystalline Ti-10V-2Fe-3Al (wt.%) alloy. The
equivalent stress—equivalent strain curves and the volume fraction of martensite—equivalent
strain curves are found to be mainly controlled by the applied stress state. Conversely, the
texture observed in the transformed Ti-10V-2Fe-3Al is found to be primarily controlled by
the imposed macroscopic strain state. The validity of the proposed materials constitutive
model has been established by demonstrating a reasonable agreement between the model
predictions and the available experimental data. © 2000 Kluwer Academic Publishers

1. Introduction the parent phase and martensite) becomes smaller and
Martensitic transformation is generally characterized agventually becomes negative as temperature increases,
a diffusionless, displacive change in materials crystathe stress required for the onset of martensitic transfor-
structure in which both the morphology of the productmation in the stress—assisted regime increases with tem-
phase (martensite) and the kinetics of the transformaperature. At temperatures aboV , the stress needed
tion process are dominated by the strain accompanyintp initiate the transformation becomes higher than the
the transformation. In general, martensitic transformaparent—phase yield stress. Consequently, the applied
tion begins to take place spontaneously during (fastptress causes plastic deformation (typically by slip)
cooling from elevated temperatures when the temperrather than the martensitic transformation to take place.
ature falls below a material-specific temperativ, Nonuniformity in plastic deformation gives rise to the
(the martensite start temperature). The transformatioformation of various planar— and volume-type lattice
product generally consists of coarse plates. Martensitidefects such as stacking faults, shear bands, twins, etc.
transformation, however, can take place at temperathe places where these defects intersect act as addi-
tures aboveMg provided an external stress is applied.tional potential sites for the nucleation of martensite
At temperatures betwedvls and a stress—state depen- plates. Combined effects of the additional nucleation
dent temperature generally referred toM$, marten-  sites and the applied stress cause the martensitic trans-
site appears also in the form of coarse plates. It is beformation to take place after a certain amount of plas-
lieved that in this temperature range the applied strestic deformation. This type of martensitic transforma-
merely assists the formation of martensite plates at théon is generally referred to as the “strain—induced”
same nucleation sites which give rise to the formation ofnartensitic transformation [1] and is characterized by a
martensite plates on cooling beldvis. Consequently, very fine—plate martensite microstructure. The strain—
the martensitic transformation taking place in tfle-  induced martensitic transformation is generally ob-
MZ temperature range is named the “stress—assistederved up to a stress state—dependent tempersligire
martensitic transformation [1]. Since the chemical driv-above which failure occurs before any transformation
ing force (the difference in the Gibbs free energies oftakes place.
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During the last two decades, it has been unequiv-
ocally established that the stress—assisted martensiti
transformation can significantly enhance the tensile \
ductility and the fracture toughness of high—strength,

brittle materials. The martensitic transformation has Fearrent, Stressed o
F = F¥pP Configuration

been most extensively investigated and the major im-
provements in ductility and toughness obtained inZrO
and various ceramics containing Zr@econd—phase
particles (e.g. [2]), in ultra—high strength secondary—
hardening steels (e.g. [3]) and y+-TiAl intermetallic
containing metastable dispersions of Ti-V-based pre:
cipitates [4]. ot
Over the last ten years, several constitutive models
for materials undergoing a stress—assisted transformdigure 1 Decomposition of the deformation gradient for a material un-
tion have been proposed. Several of them (e.g. [5, 6]9|ergoing a stress—assisted martensitic transformation.
are quite simple and purely phenomenological in na-
ture. Others (e.g. [7, 8]) are more sophisticated and ) ]
take into account the basic thermodynamics, kineticsture into the crystal structure of martensite phase
statistics and heterogeneous nature of the martensit@nd that the martensite phase can appear in _several
transformation. However, in all these models, the ma_crysftallogrqphlcally—equwalent variants. In_addltlon to
terialis considered as a latticeless continuum, and hendBe inelastic deformation, the crystal lattices of the
no account can be given to the basic crystallography oo structures along with the embedded material un-
martensitic transformation. dergo elastic deformation and rotation. Consequently,
In the present work, we proposed a new crystal—the total deformation gradierit is multiplicative de-
plasticity based model for the stress—assisted martef¢omposed as:
sitic transformation. The model utilizes the approach
for incorporation of deformation twinning in crys- F=FFP 1)
tal plasticity recently proposed by Kalidindi [9]. The
model is subsequently used to analyze the evolutionvhere F* and FP are respectively the elastic and the
of martensite and materials texture and their effect orplastic components &. A schematic of the multiplica-
the stress—strain curves associated with a b:f@.0.  tive decomposition of the deformation gradient as de-
stress—assisted martensitic transformation in Ti-10V4ined in Equation 1 is shown in Fig. 1. For clarity only
2Fe—-3Al (wt.%) under uniaxial and plane—strain com-two variants of martensite are shown in Fig. 1.
pression and bi—axial tension. While Fig. 1 shows that only some regions of the
The organization of the paper is as following. The de-crystal undergo inelastic deformation, the crystal is ho-
velopment of the materials constitutive model includingmogenized in the present model so that each portion of
the derivation of the evolution for the transformation the crystal is taken to undergo the same deformation
resistance is presented in Section 2. The application djradient, an effective deformation gradient defined as
the model to the stress-assisted b-e.£c.0. marten-  the weighted contribution of the deformation gradient
sitic transformation in the Ti-10V-2Fe-3Al (wt.%) al- of different parts of the crystal. Since the deformation
loy under uniaxial and plane—strain compression as weljjradient is made uniform throughout the crystal, the
as under bi—axial tension is discussed in the Section Jtresses in its different parts can be defined as:
Main conclusions resulted from the present work are
presented in Section 4. TPt = LPYE¥] )

T*afmt — Lotfmt[E*] (3)

f—variant

a—variant of Martensite

Matrix

2. Material constitutive model

Notation used in the present work is based on th
following conventions: Scalars are written in italic
type (e.g.y, o, f), vectors using boldface lowercase
Romans (e.gn, m), second order tensors as boldface
uppercase Romans (elg, T, E), while fourth order
tensor using capital boldface italics (eLg. The tensor
(dyadic) product is indicated by®”, while the scalar

wherelL is the fourth—order elasticity tensor;* and

* represent respectively the second Piolla—Kirchhoff
stress and the Green strain, and the superscripts “pt”
and ‘o—mt” refer respectively to the parent phase and
the a—variant of martensitel* andE* are defined re-
spectively by the following two relations:

* *—1 * *—T
product of the tensors of appropriate order by a raised T" = F{(detF)T)F (4)
dot. 1 T
EX=(=|{F"'F -1} 5)
2
2.1. Derivation whereT is the Cauchy stresé the second order iden-

The main feature of the present model is that theity tensor and “det” and superscript “T” denote the de-
inelastic deformation of the material takes place byterminant and the transpose, respectively. The Cauchy
a transformation of the parent—-material crystal strucstress in the crystal is defined as a volume average of
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the stresses in its various parts as: yo andm in Equation 10a are model parameters (taken
respectively as 0.001$ and 0.01)z¢ the shear stress
resolved in the habit plane (the plane of the marten-
T= (1 -y fo‘)Tpt + Y feT*™  (6) sitic plate face) in the direction of the transformation
@ i shear in thex—variant of martensites, the hydrostatic
i . stress and” is the resistance of the parent phase toward
where f* denotes the volume fraction of the-variant  ansformation into the—variant of martensite. Equa-

of martel_wsne. . tion 10b is defined in order to take into account the fact
Following Asaro and Needleman [10], the evolution ih4¢ the martensitic transformation is irreversible and
of the plastic deformation gradient is defined as: that it can take place as long as the parent phase is not
. completely transformed. The resolved shear stress and
FP = LPFP (7) " the hydrostatic stress are defined in the intermediate

) . ) o configuration in Fig. 1 as:
where the raised dot iRP denotes a time derivative of

FP and the plastic velocity gradieh? can be expressed Y =TF. (11a)

as: 1
. oh = <§)T* . (11b)
LP = (1_ > f"‘) > f“y“”"(S“ + i[mt|> (8)
o & 4 To complete the development of the constitutive model,
— . _ one mustalso define an evolution equation for the trans-
where " denotes the transformation shear strainformation resistance”. Derivation of this equation is
associated with the—variant of martensite anef resented in Section 2.3. Once such an equation is de-
the transformation volume change. It should be notegined, the evolution equation for the plastic deformation
that according to Equation 8, stress assisted marteqyradient, Equation 7, can be integrated tofgetNext,
sitic transformation is the sole mode of inelastic defor-py solving Equation 1 foF*, combining it with Equa-
mation. Consequently, the model developed here igon 5, and then with Equations 2—4 and 6 one obtains

strictly applicable only at lower stress levels at whichthe Cauchy stress in the crystal. A detailed account of
martensitic transformation proceeds by activation ofihis procedure is given in the next section.

the highly potent nuclei. Contrary, near completion

of martensitic transformation high stress levels are re-

quired to activate less potent nuclei. Under such cong 2. |ntegration procedure

ditions, other modes of inelastic deformation may be-gquation 7 can be integrated to yield:

come operational and the present model may not be

used. It should be also noted that sinc® is quan- FP(r) = exp[AtLP(2)]FP(t) (12)
titatively equal to the volume change accompanying

the transformation, it is not dependent on the marteny heret andr are respectively the time at the beginning

site variant.$” is the unit second—order tensor which and at the end of a time periaxt. Under the condition
defines the direction of the shear associated with th‘f’nat At has a small magnitude, Equation 12 can be

a—variant of martensite and is defined as:

approximated as:

S'=m"@n" ©) FP(z) ~ [I + AtLP(2)]FP(t) (13a)
wherem® andn® are respectively the unit vector in or
the direction of transformation shear and the habit— Fp—l(f) ~ FP—l(t)[| — AtLP(7)] (13b)
plane unit normal, both associated with tevariant
of martensite. whereLP(r) is given by Equation 8 in whichf¢ is

In order to complete the description of the plasticreplaced withf “(r).

flow rule given by Equation 7, one must define the evo- f at the timer, Equation 6 is substituted in Equa-
lution function for the volume fraction of each variant tjon 4, F*7(7) andF*(<) eliminated via Equation 1, and

of martensite. In the present work the following power—gp(¢) and FP~1(<) respectively replaced using Equa-

law function is used: tions 13a and 13b, one obtains the following relation:
mt 1/m
_ v [T+ Ewon T (z) ~ T = 3 " Ay*(r)C” (14)
fa = Va—mt S® o
0 whereT*", Ay* andC® are define in Kalidindi [9]T*

ot andC® can be computed using the plastic deformation
for (‘r"‘ + —2 t0h> > Oandz f# <1 (10a) gradient at the beginninds°(t), and the total defor-
ye ™ B mation gradient at the end of a time interna{z). On
mt other handAy“(r) depend ol **'(r) and hence Equa-
for (.Ta 4 En gh> <O0or Z f#>1 (10b) tion 14 represents a system of six nonlinear algebraic
ye-m B equations with six unknown componentsTof(z).
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~OnceT*(r) is determined by solving Equation 14, with the value ofs* at the instant of nucleation of
f%(r)is calculated via Equations 11a, 11b, 10a and 10bmartensite plate being:
Substitutingf *(z) in Equations 8, 13a and next in (1)
yieldsF*(z). Finally, the Cauchy streS&"(t) is deter- 4
mined by combining Equations 2—6. S = §A9(Z fﬂ)- (18)
B

To account for the experimental observation that the
martensite plates of progressively smaller size are

resistance ) ) formed as the transformation proceeds, the plate radius
To derive an evolution equation for transformation re-rp in Equation 17 is made dependent on the total vol-

sistances”, the grain shape isfirstidealized as a sphere, o fraction of martensite at the instant when the plate
and the martensite plate shape as an oblate spheroid@l. ¢ aq 0, £#). The value of the transformation
Next, following Olson and Roitburd [11], the work of ogigtance at the instant of nucleation of a martensite

formation of a thin martensite plate is defined as: plate,so, is assumed in Equation 18 to be independent
4 4 of the variant of martensite. However, to account for
_ T2 T2 2 the fact that martensite nucleation is a heterogeneous
AW = ?rpcpAg + ?rpcpK +2rrpoo (15) process and that it is controlled by the preexisting nu-
cleation sites, and that as the transformation proceeds
whererp and ¢, are respectively the radius and the new martensite plates are formed by the activation of
semi—thickness of a martensite plateg the free en- nuclei of progressively lower potencss is made de-
ergy change accompanying martensitic transformatiopendent on the total volume fraction of martensite at
comprised of a chemical term (constant at a giverthe instant of plate nucleatiod, fh.
temperature), a plate—shape independent strain—energyUnder the assumption that at any time during trans-
term, a parent—phase/martensite interface friction ternformation only one plate of martensite of thhevariant
and a term associated with the contribution of the acgrows within each parent—phase grain, the rate of in-
tivated nucleation site to martensite nucleatiéh,a crease of the martensite plate thickné$scan be ex-
plate shape—dependent strain energy parametegeand pressed as a function of the rate of increase of the vol-
the parent phase/martensitic surface energy. Within thame fraction of thex—variant of martensite using the

2.3. Evolution equation for transformation

isotropic elasticity frameworkK is defined as#f(2—  following procedure:
v)/8(L— V)] uy ™+ [ /41— v)]u(eM™)? where p is First, the ratio of the volumes of a single martensite
the shear modulus andthe Poisson’s ratio. plate of thew—variant and the (untransformed) parent—

To derive an expression for the evolution of transfor-phase grain is given as:
mation resistance, itis first recognized that a martensite

plate initially forms as a very thin small plate and then [(4/3)71 (ra)zca]
grows in the radial direction at a very high speed (com- o _ P/ P (19)
parable with the speed of sound) until it encounters [(4/3)7rrg3]

the parent—phase grain boundary at which point the ra-

dial plate growth ceases. Next, the plate continues tevherery is the grain radius. Differentiation of Equa-
grow in the thickness direction at a substantially lowertion 19 with respect to time yields:

speed. The growth in the thickness direction ultimately

becomes arrested since, according to Equation 15, as [ £h 2
the plate thickens the work of transformation increases fo _ [ p (Zﬁ )] e (20)
ascg. The key assumption made in the present work is o rg P

thats” arises from the resistance the surrounding matrix
exerts on a martensite plate as the thickness of the platgypstitution of Equation 20 into Equation 17 yields:
increase. The resistance the parent phase exerts on the
martensite plate as the plate thickens can be defined as 3
the rate of change chW with the plate thickness per & = §Ka £ fo (21)
unit area of the parent phase/martensite plate interface, 3 rp( >8 fﬂ)
ie.

The superscripi is dropped fronr, in Equation 21
1 9AW* 4A 8 K Co 16 since, in general, the change o_f thg martensite plate size
n(ra)z sce 39 T30 e (16)  with the extent of transformation is not dependent on

the martensite variant. The term within the brackets on

the right-hand side of Equation 21 can be determined
The evolution equation for the transformation resis-ysing experimental data pertaining to the change of the
tances® is obtained by diﬁ:erentiating Equation 16 with average volume of the martensite plﬁ&mnd the p|ate

respect to time as: aspect rati@,/rp, with the total volume fraction trans-
formed,)", f#, using the following procedure.
v 8. ., o First, one can readily derive the following relation
S = §K ol 18 (17)  petween the instantaneous plate volumeand the
o (Zﬁ f ) average plate volume:
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(22)
] ) ] Equation 26 shows that as the martensitic transfor-
Next, the expression for the ratio of the instantaneousnation approaches completiop(; f# — 1), Ag (and

plate volume and the volume of a parent—phase graithence the deformation resistance at the instant of plate

vg, Can be rearranged as: formation) becomes infinitely large. This finding is con-
sistent with numerous experimental observations which
2 _ .
Up(Z,s f£) rp(zﬁ f£)cp show that fracture occurs before the stress-assisted
: = 2 martensitic transformation is complete.
9 g9

rg f.c.0. martensite transformation
in Ti-10V-2Fe-3Al (wt.%)

) i . The crystal plasticity model developed in the previous
Equation 23 can be solved for the first term on the rightsection is next implemented in a finite element program
hand side in terms of the left-hand side of this equation analyze the stress—assisted b-e.tc.o. martensitic
and then substituted in Equation 21. transformation in Ti-10V-2Fe—3Al (wt.%), the alloy

~ To determine theng vs. 3, 7 relation, the statis- \yhich was studied experimentally by Dueeital.[13].
tical model of martensite nucleation originally devel-

oped by Olsoret al. [1] has been used. According to
this model, the potency of a nucleation site, expresseg@.1. Crystallography of b.c.c.—f.c.o.

3
_ [rp(Zﬂ fﬁ)} [@(Z f,g;)} 23) 3. Application of the model to the b.c.c.—

in terms of a defect size parametsy,is defined as a martensitic transformation
following function of Ag: To determine the basic crystallographic data associated
with the b.c.c~f.c.0. martensitic transformation in the
200 Ti—10V-2Fe-3Al alloy, the CRAB theory originally
n= oVimAg (24) proposed by Crocker [14] is utilized. A brief overview

of the CRAB theory is given in Appendix A.
The main assumption incorporated in the CRAB the-

whereg is the surface atomic density for the parent . iq that the overall strain accompanying the forma-
phase/martensite interface awg the molar volume. é;

Nucleat . ¢ the high X ion of a martensite plate is an invariant plane strain
Nucleation sites of the highest potency are activateqpg) yith the plate faces being the invariant planes. In
first and as the martensitic transformation proceeds th

) ) _ . addition to a strain associated with the change in the
sites of progressively lower potency are activated. Thig,

. g rystal structure accompanying the martensitic trans-
B . . . . .
;etlglt'?lnz?zg’_"eem and}_; f” is expressed by Chen ¢;mation, the Bain strain and a lattice rotation, a shear—

type deformation (twinning in the case of the Ti—-10V-
2Fe-3Al alloy) which leaves the crystal structure of
1 martensite unaltered, the lattice invariant deformation,
n=-- In( > f# (25)  also takes place. The necessary input parameters for
B the CRAB theory used in the present work are given in
Table I.
whereqx is a site—potency distribution parameter. In accordance with the experimental results of
By combining Equation 24 and 25 and by including aWilliams [15], the lattice invariant deformation is
term corresponding to the magnitude of the Gibbs freexdopted to take place by twinning dill}co <
energy change atls, Agp, one obtains: {110}p.cc. planes. Following the procedure of Bowles

TABLE | Input parameters used in the calculations of the crystallographic parameters associated with the martensitic transformation in Ti—10V-
2Fe-3Al (wt.%)

Lattice Parametersi:\ Qe =3.2275;8¢c0 = 3.01, b co =4.83 Cico =4.62
Transformation Volume Change eM—1— detG)=.001089
[100cc ¢ (100¢co.
Lattice Correspondence [010]pcc. © (0.5.5)co.
[001]pcc ¢ (0.5.5)co.
.70710 —.70710 70710 —.70710
Lattice Invariant (Twinning) Plane Normal o= (.70710;) ; ( .7071077) ; ( 0 7) ; ( 0 7)
0 /e 0 Jpee 707207 . \ 707107/ .
.682173 —.682173 .682173 —.682173
Lattice Invariant (Twinning) Direction |=|-.682173| ;| —.682173| ;| 263213 ;| 263213
263213 |, | 263213 |, | —682173,. | —682173;..
Twinning Magnitude yW = 214035
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TABLE Il Crystallographic data for the b.c-ef.c.0. martensitic transformation in Ti-10V-2Fe-3Al (wt.%) associated with the §1Q0k>
[100} c.0., [010c.c. < [0.5.5)c.0., [001]hcc. < [0.5.5] 0. lattice correspondence and@07107707107 Of ¢.c.(.682173— .682173263213) ¢ c.
lattice invariant shear (LIS): IPS — invariant phase strain, see Appendix A for details

Variant IPS Plane IPS Shear IPS Shear
Number Normah IPS Directionu IPS Magnitudeg Directionm Magnitudey ™ LIS Magnitudev
[ .7448707] [—.676145 [—.058691
1 —.306356 —.315933 —.028136 .088003
.592552 665743 .059231
- - - .0880013 - .053026
.643119 773458 —.067364
2 .329285 .329285 .026054 .087983
| —.691546] | —.691546 | —.050242
[ .3063827] [.315895 [.02813
3 —.744944 .676083 .058685 .087995
.592598 665691 .059227
- - - .0880010 - .161009
.329237 .292025 .026057
4 .643033 —.773553 —.067373 .087994
691472 | 562424 | —.050247

and Mckenzie [16], the twinning direction and its mag-
nitude are determined, Table I. The CRAB theory
yielded 48 variants of martensite. Four of these 48

variants corresponding to the [1Q@Q} < [100} ..,
[010].cc. < [0.5.5)ico., [001)]hcc. < [0.5.5]tc0. lat-
tice correspondence and the&/(71077071070)c..
(.682173-.682173263213) . ¢. lattice invariant (twin-
ning) shear are given in Table Il.

3.2. Evolution equation for transformation

resistance

Using quantitative metallography and image analysis o
partially transformed Ti—10V-2Fe—3Al, the following

relations for the change in the martensite plate volume
and the plate aspect ratio have been obtained in our

ongoing work [17]:

and

% B —_po_
rp(;f ) 0.2 5

45 x 10°

— fﬂ _
”p(; ) >, {7 +0.09

(um®)

0.01
5 7 +0.08

(27)

(28)

Grain
Boundary

Plate of a~varian
of Martensite

Figure 2 A schematic of a circular parent—phase grain of radjuson-
taining an oblate—spheroidal martensite plate of radfisnd semi—
thicknesscy.

3.3. Finite element simulation of

stress—assisted martensitic

transformation under different

stress and strain states
To determine the effect of stress and strain states on
the evolution of martensite and the shape of the cor-
responding equivalent stress—equivalent strain curve,

Equations 27 and 28 are used to construct the evolutiofinite €lement simulations of uniaxial and plane—strain
equation for the transformation resistance, Equation 21COMPression and bi-axial tension of the polycrystalline

The remaining model parameters for the Ti-10v-Ti=
2Fe—3Al alloy are summarized in Table Ill.

TABLE IIl Values of the material parameters for Ti-10V-2Fe—3Al

(wt.%) used in the implementation of the constitutive model

Parameter Unit Value Reference
n GPa 58.0 [7, 8]

v No unit 0.3 [7,8]

o No unit 0.84 [7,8]

o0 J/n? 0.35 [7, 8]

0 mol/m? 301x10°° [7, 8]

Vin m3/mol 898x 1076 [7, 8]

AQo J/mol 700 [7,8]

10V-2Fe—3Al alloy are carried out. In each case, a
finite element mesh consisting of 343 eight—node three—
dimensional elements (ABAQUS designation C3D8) is
used. The initial mesh is shown in Fig. 3a. Each el-
ement is taken to represent a grain (a single crystal)
and the initial orientation of each element is set at ran-
dom. In the case of uniaxial compression, the top and
the bottom faces of the finite—element mesh are con-
strained to remain planar during deformation, made free
of shear tractions and subject to displacement bound-
ary conditions consistent with a true axial strain rate
of —0.001 s*. In the case of plane—strain compression,
the same boundary conditions are applied to the top and
to the bottom of the mesh as in the case of uniaxial com-
pression. In addition, however, no strain normal to the



individual plates are formed within a grain at different
times, and a new plate is generally formed only after the
plate which was operational in the last time increment,
stops growing. This procedure allows the prediction
of the evolution of the average martensite plate volume
with the progress of martensitic transformation. Thatis,
if the same martensite variant is found to be operational
over a number of consecutive time increments within a
given grain, it is assumed that within this time period
the transformation within that grain occurs by the nu-
cleation and growth of the same martensite plate. The
variant of martensite which is operational within each
time increment is defined as the one which is character-
ized by a maximum rate of increase of the martensite
volume fraction,f¢.

To verify texture development during the stress—
assisted martensitic transformation under the three de-
formation modes discussed earlier, the orientation of a

® @ specific set of crystallographic planes and directions in

. e . . all martensite variants at all integration points of each
Figure 3 Initial finite element mesh containing 343 eight—node three— . . . . . .
dimensional elements: (a) initial mesh, (b) mesh after uniaxial comprr—)sgraIn 1S determlned inthe Cu,rrent Conflgurat_lon' Thisis
sion, (c) mesh after plane—strain compression and (d) mesh after bi-axiZlone by applying the following transformation opera-
tension. Meshes in (b)—(d) correspond to the equivalent plastic strain otion to the crystal plane normat, = {110}, and the
0.05. crystallographic directiomc, = (111), . in the par-
ent phase which correspond to a close—packed plane

and close—packed direction in martensite:
front and the back faces of the mesh are allowed. In the

case of bi—axial tension, no constraints are imposed on O =
the top and the bottom faces of the mesh. However, the ng, = — flp
left/right and front/back faces are constrained to remain [det(F*—T) detP>—1)]
planar and subject to displacement boundary conditions
consistent with a normal strain rate of 0.0005.€De- ~ and:
formed meshes corresponding to the equivalent strain

of 0.05 obtained under uniaxial compression, plane— F*T(r)R*P*mcp
strain compression and bi—axial tension are shown in [det(F*—T) det(P*)]
Fig. 3b—d, respectively.

To carry out a finite element analysis of the stress—asfor the e—variant of martensite. Next, the correspond-
sisted martensitic transformation, the crystal—plasticitying (equal—-area projection) pole figures are generated
materials constitutive model and the material state inby using the volume fractions of martensite variants to
tegration procedure, developed respectively in Secweigh their contributions to the “signal” intensity. This
tions 2.1 and 2.2, are implemented in ABAQUS Stan-was done by identifying in each grain the three variants
dard finite element program [18]. Specifically, the of martensite which have the largest volume fraction.
model is implemented in a User Material Subrou-The volume fractions of these variants are prorated so
tine (UMAT) within which the Cauchy stress and all that their sum becomes equal to 1.0. The (0,1) range is
the state variables (the deformation resistance and theext divided in five segments each 0.2 wide and each
volume fraction of each martensite variant) are updatedegment numbered as: segment 1, 0-0.2; segment 2,
for the prescribed total deformation gradient at the end.2-0.4; etc. Next, the prorated volume fractions of the
of atime step. In addition, the material Jacobian is comthree variants are assigned a number consistent with a
puted within UMAT using a finite difference perturba- corresponding segment number. For example, if the vol-
tion procedure [9]. The material Jacobian is requiredume fraction of one of the variants is 0.35, that variant
in the global Newton scheme of ABAQUS/Standardis assigned a number 2. The numbers assigned repre-
in order to achieve an accurate assessment of th&ent the number of closely spacedymbols used to
kinematics. represent the contribution of the variant in question to

In order to simplify the calculations and reduce thethe pole figure.
computational time, only 12 out of 48 variants of A comparison between the computed and the exper-
martensite are considered in the present work. The 1Bnental [13] uniaxial compression equivalent stress—
variants are chosen in such a way that if two or moreequivalent strain curves for Ti—10V-2Fe-3Al are
variants have comparable orientations of their habishown in Fig. 4. Following the procedure of Gruijicic
plane and/or direction of shear only one is retained irand Sankaran [7], the original experimental data were
the analysis. In addition, only one variant of marten-revised to remove the effect of 10 vol.% of a second
site is allowed to be operational within a given grain atphase. Based on the results shown in Fig. 4, the model
any time step. This was done in order to mimic the ac-developed here seemsto accountreasonably well for the
tual mechanism of martensitic transformation in whichexperimentally observed equivalent stress—equivalent

(29)

mgp(f) =

(30)
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1le+03 T T T T

. inelastic deformation. Consequently, when the stress
required to maintain the operation of martensitic trans-
formation becomes too high, slip and/or twinning take
Duerig et al. [13] ] over as the dominant modes of inelastic deforma-
tion. As a result, one observes a normal “parabolic—
type” hardening characterized by a decreasing rate of
- strain hardening in the later stages of inelastic defor-
mation.

The equivalent stress—equivalent strain curves and
i the martensite volume fraction—equivalent strain curves
for the three deformation modes discussed above are
shown in Fig. 5a and b, respectively. The results shown

900+

800+

7004

600

500

400

3004 E

Equivalent Stress, (MPa)

200-] J in these figures can be summarized as following:
1004 - — For each mode of deformation, a normal strain—
hardening behavior characterized by a decreasing rate
T T I T T I . 1, ofstainhardeningisobservedatlowvalues of the equiv-
Equivalent Strain, % alent strains. This behavior is generally attributed to the

combined effects of strain hardening and lattice rotation
Figurg 4 _A compariso_n of the gquivalent stress—quivalent straip curveaccompz_myir.|g the inelastic deformation.
for uniaxial compression predicted by the model with the experimental . “
results of Dueriget al. [13]. — Atthe later stages of deformation, an unusual “up-

ward” hardening characterized by an increase in the

rate of strain hardening with the equivalent strain is ob-
strain relationship in the early stages of deformationserved. This finding is consistent with the factthat as the
including the stage when the material displays a nortransformation proceeds, nucleation sites of a progres-
mal decreasing rate of strain hardening and when thsively lower potency (a higher initial transformation
material begins to develop an unusual increasing rateesistance, Equation 26) are activated.
of strain hardening. However, at the later stages of de- — The equivalent stress—equivalent strain curve is
formation the two equivalent stress—equivalent strairsignificantly affected by the mode of deformation.
curves begin to diverge. This can be readily understoo&pecifically, higher equivalent stress values are ob-
since the proposed model considers the stress—assistegrved in the cases of plane—strain compression and bi—
martensitic transformation as a sole mechanism of inaxial tension in comparison to the one found in the case
elastic deformation. Therefore, at the later stages of desf uniaxial compression. This finding is consistent with
formation, martensitic transformation proceeds by thehe fact that, since the transformation volume change
activation of martensite nuclei of low potency. Con- is negative in Ti-10V-2Fe—3Al, a positive (tensile) hy-
sequently, the (calculated) equivalent stress needed tirostatic stress opposes while a negative (compressive)
the maintain martensitic transformation continues tohydrostatic stress assists the martensitic transforma-
increase with the equivalent strain. In the actual mation. Therefore, lowest levels of the equivalent stress
terial, on the other hand, slip and/or twinning in the are seen in the case of uniaxial compression where the
parent phase are available as potential mechanisms foydrostatic stress is most negative.

1e+03 T T 0.8 T T T T T T T
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800+ . =
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Figure 5 Effect of deformation mode on the equivalent stress—equivalent strain and volume fraction of martensite—equivalent strain curves as predicted
by the model.
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— For each of the three modes of deformation thergoorted by the experimental results, it appears that the
is a monotonic, approximately linear increase in thestrain state (different in plane—strain compression rela-
volume fraction of martensite with the equivalent plas-tive to uniaxial compression and bi—axial tension) also
tic strain, Fig. 5b. This finding is consistent with the fact has an important effect on the progress of martensitic
that the martensitic transformation is the sole mode ofransformation.
inelastic deformation considered and that the transfor-
mation is irreversible. The (equal—area projection) (13Q) —type pole fig-

— The extent of martensitic transformation at a givenures for the initial 343—grain polycrystalline material
level of the equivalent strain is dependent on the deare shown in Fig. 6. The corresponding (equal-area
formation mode, Fig. 5b. This dependence is, howeverprojection) (111). o, —type pole figures at the equivalent
significantly weaker than the equivalent strain depenstrain of 0.05 in the partially transformed Ti-10V-2Fe—
dence of the equivalent stress, Fig. 5a. Nevertheless, tf8Al under uniaxial compression, plane—strain compres-
relative position of the three curves in Fig. 5a and b ission and bi—axial tension are shown in Figs 7-9, respec-
identical (i.e. the curves corresponding to uniaxial com-tively. While no experimental data are currently avail-
pression are at the bottom, etc.). This finding suggestable to help establish the validity of the computed pole
that the highest level of stress biasing of the martenfigures, it should be noted that the texture obtained in
sitic transformation is achieved in the case of uniaxialuniaxial compression and bi—axial tension are very sim-
compression. ilar to each other and substantially different from the

— The cases of uniaxial compression and bi—axiatexture obtained in plane—strain compression. This find-
tension can be considered as ones in which the straiimg is consistent with our previous observation that uni-
state of the entire computational domain are very simaxial compression and bi—axial tension result in similar
ilar at a given level of the equivalent strain. Hence, themacroscopic strain states. It should be also noted that
observed differences in the equivalent stress—equivalefidr easier comparison with their experimental counter-
strain curves and the martensite volume fraction—part the discrete grain pole figures shown in Figs 6-9
equivalent strain curves can be attributed almost exshould be transformed into probability density plots.
clusively to the effect of stress state (more specificallyThis could be done using DIOR program contained in
to the effect of the hydrostatic stress). the popLA software package [19].

— The equivalent stress—equivalent strainandthe vol- The effect of the extent of martensitic transforma-
ume fraction of martensite—equivalent strain curvegion on the average volume of the martensite plate in
for plane—strain compression lie generally above théli-10V—2Fe—3Al undergoing the b.c-ef.c.0. stress—
ones for uniaxial compression and bi—axial tensionassisted martensitic transformation in uniaxial com-
If the sign and the magnitude of the hydrostaticpression is shown, as aband, in Fig. 10. The solid curve
stress were the only factors affecting the progress o$hown in the same figure corresponding to the exper-
martensitic transformation, one should expect thesémentally observed relationship, Equation 32. The re-
curves for plane—strain compression (moderate negsults shown in Fig. 10 indicate a fair agreement between
ative hydrostatic stress) to be located between théhe predicted and the measured results. Similar aver-
corresponding curves for uniaxial compression (largeage martensite plate volume—equivalent strain bands
negative—hydrostatic stress) and bi—axial tension (posiare obtained for the other two modes of deformation
tive hydrostatic stress). Since this conjecture is not supand hence are not shown.
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(b)

Figure 6 {111y c.c. (equal area projection) pole figures showing the initial “isotropic” texture in the 343—grain polycrystal.
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(b)

Figure 7 {111 0. (equal area projection) pole figures for the partially-transformed Ti-10V-2Fe—-3Al deformed to an equivalent strain level of

€=0.05 in uniaxial compression.

(lll)fco

(a)

(c)

Figure 8 {111 0. (equal area projection) pole figures for the partially-transformed Ti-10V-2Fe—-3Al deformed to an equivalent strain level of
€=0.05 in plane—strain compression.
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(11)gco

(@) (b)

Figure 9 {111 ¢, (equal area projection) pole figures for the partially-transformed Ti-10V-2Fe—3Al deformed to an equivalent strain level of
€=0.05 in bi—axial tension.

W
(=)

. . T r strain curves are affected both by the applied stress
state (primarily the sign and the magnitude of the
hydrostatic stress) and by the strain state.
i — The stress—assisted martensitic transformation
in Ti-10V-2Fe—3Al results in the formation of the
texture in the transformed materials. The nature of the
texture appears to be mainly controlled by the imposed
macroscopic strain state.

— The proposed model correctly predicts the experi-
mentally measured decrease of the average martensite
plate volume with the extent of transformation.

>
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‘~/ endix A: Single lattice-invariant shear
10 *//////j,//// This Model Appendix A: Single latt t sh

7 CRAB theory of martensite crystallography
/7/4'//"/% The overall deformation accompanying martensitic

transformation of parent phase into a single variant of
. . martensite is defiend as an invariant plane strain (IPS)
0 0.2 0.4 0.6 0.8 1 . . g R
Martensite Volume Fraction G of magnitudeg on a plane with a unit normal in a

unit directionu:
Figure 10 Effect of the extent of martensitic transformation on the av-

erage volume of the martensite plate. G=1+ gu®n (Al)

Average Martensite Plate Volume, microns”3

[}

4. Conclusions _ . G can be multiplicatively decomposed in a lattice ro-
Based_ on the re;ults obtained in the present work thestion R, a (symmetric) lattice strai® and a lattice
following conclusions can be drawn. invariant shea¥ as:

— By combining the basic theories for crystallogra- G =RPV. (A2)
phy, thermodynamics, kinetics and statistics of marten-
sitic transformation with the theory of crystal plasticity, R can be eliminated from Equation A2 using the iden-
a materials constitutive model for the stress—assistetity, RTR =1, to yield:
martensitic transformation suitable for implementation
in a finite element formulation can be developed. G'G=V'PV=Q (A3)

— While more experimental data are needed tq,,
validate the model, preliminary results suggest that the T
model can reasonably well account for the measured X=GG-Q=0 (Ad)
uniaxial-compression equivalent stress—equivalent
strain relation associated with the stress—assisteBinceX is symmetric, substitution of Equation Al in

martensitic transformation in Ti—-10V—2Fe—3Al. Equation A4 yields six algebraic equations in the form:
— The model suggests that the evolution of marten-
site and the corresponding equivalent stress—equivalent Xii =g’n®+2gun +1— Qi =0 (A5a)
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and
Xij = g?ninj +g(uinj +ujn) — Qij =0 (i # j).

(A5b)
wherei, j =1, 2, 3.

Equations A5a and A5b can be solved in the follow-

ing way for the five unknowng, ni/ns, n2/N3, U /us

and uy/us, a single unknown parameter (the mag-

nitude of the lattice invariant shear) contained in

Q. First, substitution of Equation A5a in the trace

X114+ Xoo+ Xzz of X gives:

0% = Q11+ Qa2+ Q33— 2(detG) — 1,

where deG =1 — ¢ is numerically equal to the ratio

(AB)

of the volumes of the corresponding cells of martensite
and the parent phase. Equation A6 yields two values
of g equal in magnitude and opposite in sign. Next, if

Equations A5a and A5b are substituted into the expres-

sion in; Xij —n%X;i —n?Xj; =0, one obtains the
following three quadratic equations:

(1 - Qi)nf +2Qijninj + (1 - Qj)nf =0
(1#)=123). (A7)

In general, Equations A7 yields two solutions for the

invariant plane strain unit normal Inspection of Equa-
tion Aba shows that there is one IPS directitior each
g/n pair and that changing the sign@$imply changes

the sign ofu and, hence, does not yield a distinct solu-

tion. Thus, for eacl Equations A5, A6 and A7 yield
two solutions for the invariant plane stra@

Q can be determined by first inverting Equation A3

to obtain:

GflGTfl — V*lpflprlval _ Q71 (A8)
If Equation Al is inverted to yield:
G l=1-gdetG)lu®n (A9)

and Equation A9 plugged in Equation A8 one obtains:
Xii = (detG)~2g?u? — 2(detG) *gnu;

+1-Q;'=0 (=123) (A10a)

and
Xij = (detG)~%g?ujuj — (detG)*g(niu; + nju;)
Gt=0 (#£j=123) (AL0b)

The lattice invariant sheaf of magnitudev on a plane
of the unit normab in the unit direction is given as:

V=I+vl®o (A13a)

and

Vi=l+4ul®o. (A13b)
Substitution of Equations Al13a and A13b respectively
in Equations A3 and A8 and then in Equation A12
yields the following quadratic equation for

v2{(detG) (I - P2l) — (detG)(o- P20)}
+ 2v{(detG) (0 - P?l) + (detG)(l - P~20)}
+ {(detG)tr (P?) — (detG) tr(P~2) — (detG)*
+ (detG)} =0 (A14)

where trP?) = PZ + P2 + P4 +2P5 + 2P+ 2P2
and trP~2) is defined in an analogous way. For each
I/0 pair, Equation Al14 gives two values forwhich,
in turn, via Equation A13 yield two possible lattice in-
variant shear¥ and, hence, two possible values @r
OnceG is determined, the IPS shear unit direction
and the shear magnitugé are determined as:

ym = gu — (detG)n. (A15)
In summary, the basic crystallographic features of a

martensitic transformation can hence be determined us-
ing the following procedure:

1. Lattice parameter and lattice correspondence of
the parent phase and martensite are first established,
and the pure straiP and the martensite/parent phase
volume ratio (deG) calculated.

2. The unit plane normal and the corresponding
unit shear direction for the lattice invariant shear
are selected using the available experimental data.

3. detG), P, o and| are substituted into Equa-
tion Al4 to obtain the magnitude of the lattice invariant
shear.

4. v is substituted in Equation A13 to obtaifh

5. PandV are substituted in Equation A3 to obtain

6. deGG andQ are next substituted in Equation A6
to obtaing.

7. Q is substituted in Equation A7 to obtain

8. g, n and Q are substituted in Equation A5 to
obtainu.

9. g,nandu are substituted in Equation Al to obtain

The trace ofX can be constructed and rearranged toG.

yield:

(detG)2g% = Qi + Qy) + Qa5 — 2(detG) ™ — 1.

(A11)
Elimination of g? from Equations A6 and A11 results
in the following relation forQ:

(detG) 1 (Q11+ Q22+ Q33— 1)
= (detG)(Qif + Q5 + Q3 — 1). (Al2)

4646

10. ¥ andm are determined using Equation A15.

In general, for each combination of d&l, P, o and
[, there are two values efand four values fof.
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