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A new model based on crystal–plasticity, crystallography, thermodynamics, kinetics and
statistics is developed for stress–assisted martensitic transformation. The model includes
the essential features of the stress–assisted martensitic transformation, such as: nuclei of
progressively lower potency are activated in the course of transformation, the martensite
phase appears in the form of thin plates, the parent phase exerts a higher resistance toward
the growth of a plate in the thickness than in the radial direction, the average plate size
decreases while the average plate aspect ratio increases with the extent of transformation,
etc. The model is implemented in the commercial finite element code ABAQUS/Standard to
analyze the evolution of martensite, materials texture and the resulting equivalent
stress–equivalent strain curve during the stress–assisted martensitic transformation under
different stress and strain states in a polycrystalline Ti–10V–2Fe–3Al (wt.%) alloy. The
equivalent stress–equivalent strain curves and the volume fraction of martensite–equivalent
strain curves are found to be mainly controlled by the applied stress state. Conversely, the
texture observed in the transformed Ti–10V–2Fe–3Al is found to be primarily controlled by
the imposed macroscopic strain state. The validity of the proposed materials constitutive
model has been established by demonstrating a reasonable agreement between the model
predictions and the available experimental data. C© 2000 Kluwer Academic Publishers

1. Introduction
Martensitic transformation is generally characterized as
a diffusionless, displacive change in materials crystal
structure in which both the morphology of the product
phase (martensite) and the kinetics of the transforma-
tion process are dominated by the strain accompanying
the transformation. In general, martensitic transforma-
tion begins to take place spontaneously during (fast)
cooling from elevated temperatures when the temper-
ature falls below a material–specific temperature,Ms
(the martensite start temperature). The transformation
product generally consists of coarse plates. Martensitic
transformation, however, can take place at tempera-
tures aboveMs provided an external stress is applied.
At temperatures betweenMs and a stress–state depen-
dent temperature generally referred to asMσ

s , marten-
site appears also in the form of coarse plates. It is be-
lieved that in this temperature range the applied stress
merely assists the formation of martensite plates at the
same nucleation sites which give rise to the formation of
martensite plates on cooling belowMs. Consequently,
the martensitic transformation taking place in theMs–
Mσ

s temperature range is named the “stress–assisted”
martensitic transformation [1]. Since the chemical driv-
ing force (the difference in the Gibbs free energies of

the parent phase and martensite) becomes smaller and
eventually becomes negative as temperature increases,
the stress required for the onset of martensitic transfor-
mation in the stress–assisted regime increases with tem-
perature. At temperatures aboveMσ

s , the stress needed
to initiate the transformation becomes higher than the
parent–phase yield stress. Consequently, the applied
stress causes plastic deformation (typically by slip)
rather than the martensitic transformation to take place.
Nonuniformity in plastic deformation gives rise to the
formation of various planar– and volume–type lattice
defects such as stacking faults, shear bands, twins, etc.
The places where these defects intersect act as addi-
tional potential sites for the nucleation of martensite
plates. Combined effects of the additional nucleation
sites and the applied stress cause the martensitic trans-
formation to take place after a certain amount of plas-
tic deformation. This type of martensitic transforma-
tion is generally referred to as the “strain–induced”
martensitic transformation [1] and is characterized by a
very fine–plate martensite microstructure. The strain–
induced martensitic transformation is generally ob-
served up to a stress state–dependent temperatureMd,
above which failure occurs before any transformation
takes place.
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During the last two decades, it has been unequiv-
ocally established that the stress–assisted martensitic
transformation can significantly enhance the tensile
ductility and the fracture toughness of high–strength,
brittle materials. The martensitic transformation has
been most extensively investigated and the major im-
provements in ductility and toughness obtained in ZrO2
and various ceramics containing ZrO2 second–phase
particles (e.g. [2]), in ultra–high strength secondary–
hardening steels (e.g. [3]) and inγ–TiAl intermetallic
containing metastable dispersions of Ti–V–based pre-
cipitates [4].

Over the last ten years, several constitutive models
for materials undergoing a stress–assisted transforma-
tion have been proposed. Several of them (e.g. [5, 6])
are quite simple and purely phenomenological in na-
ture. Others (e.g. [7, 8]) are more sophisticated and
take into account the basic thermodynamics, kinetics,
statistics and heterogeneous nature of the martensitic
transformation. However, in all these models, the ma-
terial is considered as a latticeless continuum, and hence
no account can be given to the basic crystallography of
martensitic transformation.

In the present work, we proposed a new crystal–
plasticity based model for the stress–assisted marten-
sitic transformation. The model utilizes the approach
for incorporation of deformation twinning in crys-
tal plasticity recently proposed by Kalidindi [9]. The
model is subsequently used to analyze the evolution
of martensite and materials texture and their effect on
the stress–strain curves associated with a b.c.c.→f.c.o.
stress–assisted martensitic transformation in Ti–10V–
2Fe–3Al (wt.%) under uniaxial and plane–strain com-
pression and bi–axial tension.

The organization of the paper is as following. The de-
velopment of the materials constitutive model including
the derivation of the evolution for the transformation
resistance is presented in Section 2. The application of
the model to the stress–assisted b.c.c.→f.c.o. marten-
sitic transformation in the Ti–10V–2Fe–3Al (wt.%) al-
loy under uniaxial and plane–strain compression as well
as under bi–axial tension is discussed in the Section 3.
Main conclusions resulted from the present work are
presented in Section 4.

2. Material constitutive model
Notation used in the present work is based on the
following conventions: Scalars are written in italic
type (e.g.γ , σ , f ), vectors using boldface lowercase
Romans (e.g.n, m), second order tensors as boldface
uppercase Romans (e.g.F, T, E), while fourth order
tensor using capital boldface italics (e.g.L). The tensor
(dyadic) product is indicated by “⊗”, while the scalar
product of the tensors of appropriate order by a raised
dot.

2.1. Derivation
The main feature of the present model is that the
inelastic deformation of the material takes place by
a transformation of the parent–material crystal struc-

Figure 1 Decomposition of the deformation gradient for a material un-
dergoing a stress–assisted martensitic transformation.

ture into the crystal structure of martensite phase
and that the martensite phase can appear in several
crystallographically–equivalent variants. In addition to
the inelastic deformation, the crystal lattices of the
two structures along with the embedded material un-
dergo elastic deformation and rotation. Consequently,
the total deformation gradientF is multiplicative de-
composed as:

F = F∗Fp (1)

whereF∗ and Fp are respectively the elastic and the
plastic components ofF. A schematic of the multiplica-
tive decomposition of the deformation gradient as de-
fined in Equation 1 is shown in Fig. 1. For clarity only
two variants of martensite are shown in Fig. 1.

While Fig. 1 shows that only some regions of the
crystal undergo inelastic deformation, the crystal is ho-
mogenized in the present model so that each portion of
the crystal is taken to undergo the same deformation
gradient, an effective deformation gradient defined as
the weighted contribution of the deformation gradient
of different parts of the crystal. Since the deformation
gradient is made uniform throughout the crystal, the
stresses in its different parts can be defined as:

T∗pt = Lpt[E∗] (2)

T∗α−mt = Lα−mt[E∗] (3)

whereL is the fourth–order elasticity tensor,T∗ and
E∗ represent respectively the second Piolla–Kirchhoff
stress and the Green strain, and the superscripts “pt”
and “α−mt” refer respectively to the parent phase and
theα–variant of martensite.T∗ andE∗ are defined re-
spectively by the following two relations:

T∗ = F∗−1{(detF∗)T}F∗−T (4)

E∗ =
(

1

2

)
{F∗TF∗ − I } (5)

whereT is the Cauchy stress,I the second order iden-
tity tensor and “det” and superscript “T” denote the de-
terminant and the transpose, respectively. The Cauchy
stress in the crystal is defined as a volume average of
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the stresses in its various parts as:

T =
(

1−
∑
α

f α
)

Tpt+
∑
α

f αTα−mt (6)

where f α denotes the volume fraction of theα–variant
of martensite.

Following Asaro and Needleman [10], the evolution
of the plastic deformation gradient is defined as:

Ḟp = LpFp (7)

where the raised dot iṅFp denotes a time derivative of
Fp and the plastic velocity gradientLp can be expressed
as:

Lp =
(
1−

∑
α

f α
)∑

α

ḟ αγ α−mt

(
Sα + εmt

n

γ α−mt
I

)
(8)

whereγ α−mt denotes the transformation shear strain
associated with theα–variant of martensite andεmt

n
the transformation volume change. It should be noted
that according to Equation 8, stress assisted marten-
sitic transformation is the sole mode of inelastic defor-
mation. Consequently, the model developed here is
strictly applicable only at lower stress levels at which
martensitic transformation proceeds by activation of
the highly potent nuclei. Contrary, near completion
of martensitic transformation high stress levels are re-
quired to activate less potent nuclei. Under such con-
ditions, other modes of inelastic deformation may be-
come operational and the present model may not be
used. It should be also noted that sinceεmt

n is quan-
titatively equal to the volume change accompanying
the transformation, it is not dependent on the marten-
site variant.Sα is the unit second–order tensor which
defines the direction of the shear associated with the
α–variant of martensite and is defined as:

Sα = mα ⊗ nα (9)

wheremα and nα are respectively the unit vector in
the direction of transformation shear and the habit–
plane unit normal, both associated with theα–variant
of martensite.

In order to complete the description of the plastic
flow rule given by Equation 7, one must define the evo-
lution function for the volume fraction of each variant
of martensite. In the present work the following power–
law function is used:

ḟ α =


γ̇0

γ α−mt

τα + εmt
n

γ α−mtσh

sα

1/m

0

for

(
·τα + εmt

n

γ α−mt
σh

)
> 0 and

∑
β

f β < 1 (10a)

for

(
·τα + εmt

n

γ α−mt
σh

)
≤ 0 or

∑
β

f β ≥ 1 (10b)

γ̇0 andm in Equation 10a are model parameters (taken
respectively as 0.001 s−1 and 0.01),τα the shear stress
resolved in the habit plane (the plane of the marten-
sitic plate face) in the direction of the transformation
shear in theα–variant of martensite,σh the hydrostatic
stress andsα is the resistance of the parent phase toward
transformation into theα–variant of martensite. Equa-
tion 10b is defined in order to take into account the fact
that the martensitic transformation is irreversible and
that it can take place as long as the parent phase is not
completely transformed. The resolved shear stress and
the hydrostatic stress are defined in the intermediate
configuration in Fig. 1 as:

τα = T∗ · Sα (11a)

σh =
(

1

3

)
T∗ · I . (11b)

To complete the development of the constitutive model,
one must also define an evolution equation for the trans-
formation resistancesα. Derivation of this equation is
presented in Section 2.3. Once such an equation is de-
fined, the evolution equation for the plastic deformation
gradient, Equation 7, can be integrated to getFp. Next,
by solving Equation 1 forF∗, combining it with Equa-
tion 5, and then with Equations 2–4 and 6 one obtains
the Cauchy stress in the crystal. A detailed account of
this procedure is given in the next section.

2.2. Integration procedure
Equation 7 can be integrated to yield:

Fp(τ ) = exp[1tLp(τ )]Fp(t) (12)

wheret andτ are respectively the time at the beginning
and at the end of a time period1t . Under the condition
that1t has a small magnitude, Equation 12 can be
approximated as:

Fp(τ ) ≈ [I +1tLp(τ )]Fp(t) (13a)

or

Fp−1(τ ) ≈ Fp−1(t)[I −1tLp(τ )] (13b)

whereLp(τ ) is given by Equation 8 in whichḟ α is
replaced withḟ α(τ ).

If at the timeτ , Equation 6 is substituted in Equa-
tion 4,F∗T(τ ) andF∗(τ ) eliminated via Equation 1, and
Fp(τ ) andFp−1(τ ) respectively replaced using Equa-
tions 13a and 13b, one obtains the following relation:

T∗pt(τ ) ≈ T∗tr −
∑
α

1γ α(τ )Cα (14)

whereT∗tr,1γ α andCα are define in Kalidindi [9].T∗tr
andCα can be computed using the plastic deformation
gradient at the beginning,Fp(t), and the total defor-
mation gradient at the end of a time interval,F(τ ). On
other hand,1γ α(τ ) depend onT∗pt(τ ) and hence Equa-
tion 14 represents a system of six nonlinear algebraic
equations with six unknown components ofT∗(τ ).
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OnceT∗(τ ) is determined by solving Equation 14,
ḟ α(τ ) is calculated via Equations 11a, 11b, 10a and 10b.
Substituting ḟ α(τ ) in Equations 8, 13a and next in (1)
yieldsF∗(τ ). Finally, the Cauchy stressT∗(τ ) is deter-
mined by combining Equations 2–6.

2.3. Evolution equation for transformation
resistance

To derive an evolution equation for transformation re-
sistance,sα, the grain shape is first idealized as a sphere
and the martensite plate shape as an oblate spheroidal.
Next, following Olson and Roitburd [11], the work of
formation of a thin martensite plate is defined as:

1W = 4π

3
r 2

pcp1g+ 4π

3
rpc2

pK + 2πr 2
pσ0 (15)

where rp and cp are respectively the radius and the
semi–thickness of a martensite plate,1g the free en-
ergy change accompanying martensitic transformation
comprised of a chemical term (constant at a given
temperature), a plate–shape independent strain–energy
term, a parent–phase/martensite interface friction term
and a term associated with the contribution of the ac-
tivated nucleation site to martensite nucleation,K a
plate shape–dependent strain energy parameter, andσ0
the parent phase/martensitic surface energy. Within the
isotropic elasticity framework,K is defined as [π (2−
ν)/8(1− ν)]µγmt+ [π/4(1− ν)]µ(εmt

n )2 where µ is
the shear modulus andν the Poisson’s ratio.

To derive an expression for the evolution of transfor-
mation resistance, it is first recognized that a martensite
plate initially forms as a very thin small plate and then
grows in the radial direction at a very high speed (com-
parable with the speed of sound) until it encounters
the parent–phase grain boundary at which point the ra-
dial plate growth ceases. Next, the plate continues to
grow in the thickness direction at a substantially lower
speed. The growth in the thickness direction ultimately
becomes arrested since, according to Equation 15, as
the plate thickens the work of transformation increases
asc2

p. The key assumption made in the present work is
thatsα arises from the resistance the surrounding matrix
exerts on a martensite plate as the thickness of the plate
increase. The resistance the parent phase exerts on the
martensite plate as the plate thickens can be defined as
the rate of change of1W with the plate thickness per
unit area of the parent phase/martensite plate interface,
i.e.:

sα = 1

π
(
r αp
)2 ∂1Wα

∂cαp
= 4

3
1g+ 8

3
K α

cαp
r αp

(16)

The evolution equation for the transformation resis-
tancesα is obtained by differentiating Equation 16 with
respect to time as:

ṡα = 8

3
K α

ċαp

r αp
(∑

β f β
) (17)

with the value ofsα at the instant of nucleation of
martensite plate being:

s0 = 4

3
1g

(∑
β

f β
)
. (18)

To account for the experimental observation that the
martensite plates of progressively smaller size are
formed as the transformation proceeds, the plate radius
rp in Equation 17 is made dependent on the total vol-
ume fraction of martensite at the instant when the plate
is formed (

∑
β f β). The value of the transformation

resistance at the instant of nucleation of a martensite
plate,s0, is assumed in Equation 18 to be independent
of the variant of martensite. However, to account for
the fact that martensite nucleation is a heterogeneous
process and that it is controlled by the preexisting nu-
cleation sites, and that as the transformation proceeds
new martensite plates are formed by the activation of
nuclei of progressively lower potency,s0 is made de-
pendent on the total volume fraction of martensite at
the instant of plate nucleation,

∑
β f β .

Under the assumption that at any time during trans-
formation only one plate of martensite of theα–variant
grows within each parent–phase grain, the rate of in-
crease of the martensite plate thicknessċαp , can be ex-
pressed as a function of the rate of increase of the vol-
ume fraction of theα–variant of martensite using the
following procedure:

First, the ratio of the volumes of a single martensite
plate of theα–variant and the (untransformed) parent–
phase grain is given as:

f α =
[
(4/3)π

(
r αp
)2

cαp
]

[
(4/3)πr 3

g

] (19)

whererg is the grain radius. Differentiation of Equa-
tion 19 with respect to time yields:

ḟ α =
[
r αp
(∑

β f β
)]2

r 3
g

ċαp . (20)

Substitution of Equation 20 into Equation 17 yields:

ṡα = 8

3
K α

[
rg

rp
(∑

β f β
)]3

ḟ α. (21)

The superscriptα is dropped fromrp in Equation 21
since, in general, the change of the martensite plate size
with the extent of transformation is not dependent on
the martensite variant. The term within the brackets on
the right-hand side of Equation 21 can be determined
using experimental data pertaining to the change of the
average volume of the martensite platevp and the plate
aspect ratiocp/rp with the total volume fraction trans-
formed,

∑
β f β , using the following procedure.

First, one can readily derive the following relation
between the instantaneous plate volumevp and the
average plate volume:
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vp

(∑
β

f β
)
= v

(∑
β

f β
)
+
∑
β

f β
d
[
vp
(∑

β f β
)]

d
(∑

β f β
) .

(22)

Next, the expression for the ratio of the instantaneous
plate volume and the volume of a parent–phase grain,
vg, can be rearranged as:

vp
(∑

β f β
)

vg
= r 2

p

(∑
β f β

)
cp

r 2
g

=
[

rp
(∑

β f β
)

rg

]3[
cp

rp

(∑
β

f β
)]
. (23)

Equation 23 can be solved for the first term on the right-
hand side in terms of the left-hand side of this equation
and then substituted in Equation 21.

To determine the1g vs.
∑

β f β relation, the statis-
tical model of martensite nucleation originally devel-
oped by Olsonet al. [1] has been used. According to
this model, the potency of a nucleation site, expressed
in terms of a defect size parameter,n, is defined as a
following function of1g:

n = 2σ0

%Vm1g
(24)

where% is the surface atomic density for the parent
phase/martensite interface andVm the molar volume.
Nucleation sites of the highest potency are activated
first and as the martensitic transformation proceeds the
sites of progressively lower potency are activated. This
relation betweenn and

∑
β f β is expressed by Chen

et al. [12] as:

n = − 1

α
ln

(∑
β

f β
)

(25)

whereα is a site–potency distribution parameter.
By combining Equation 24 and 25 and by including a

term corresponding to the magnitude of the Gibbs free
energy change atMs,1g0, one obtains:

TABLE I Input parameters used in the calculations of the crystallographic parameters associated with the martensitic transformation in Ti–10V–
2Fe–3Al (wt.%)

Lattice Parameters,̊A ab.c.c.= 3.2275;af.c.o.= 3.01, bf.c.o.= 4.83, cf.c.o.= 4.62
Transformation Volume Change εmt

n = 1− det(G)= .001089

Lattice Correspondence
[1 0 0]b.c.c.⇔〈1 0 0〉f.c.o.
[0 1 0]b.c.c.⇔〈0 .5 .5〉f.c.o.
[0 0 1]b.c.c.⇔〈0 .5 .5〉f.c.o.

Lattice Invariant (Twinning) Plane Normal o=
.707107
.707107

0


bcc

;

−.707107
.707107

0


bcc

;

.707107
0

.707107


bcc

;

−.707107
0

.707107


bcc

Lattice Invariant (Twinning) Direction l=
 .682173
−.682173
263213


bcc

;

−.682173
−.682173
263213


bcc

;

 .682173
263213
−.682173


bcc

;

−.682173
263213
−.682173


bcc

Twinning Magnitude γ tw= .214035

1g

(∑
β

f β
)
= 1g0

Vm
− 2ασ0

%Vm ln
(∑

β f β
) . (26)

Equation 26 shows that as the martensitic transfor-
mation approaches completion (

∑
β f β→ 1),1g (and

hence the deformation resistance at the instant of plate
formation) becomes infinitely large. This finding is con-
sistent with numerous experimental observations which
show that fracture occurs before the stress–assisted
martensitic transformation is complete.

3. Application of the model to the b.c.c.→→
f.c.o. martensite transformation
in Ti–10V–2Fe–3Al (wt.%)

The crystal plasticity model developed in the previous
section is next implemented in a finite element program
to analyze the stress–assisted b.c.c.→f.c.o. martensitic
transformation in Ti–10V–2Fe–3Al (wt.%), the alloy
which was studied experimentally by Dueriget al.[13].

3.1. Crystallography of b.c.c.→f.c.o.
martensitic transformation

To determine the basic crystallographic data associated
with the b.c.c.→f.c.o. martensitic transformation in the
Ti–10V–2Fe–3Al alloy, the CRAB theory originally
proposed by Crocker [14] is utilized. A brief overview
of the CRAB theory is given in Appendix A.

The main assumption incorporated in the CRAB the-
ory is that the overall strain accompanying the forma-
tion of a martensite plate is an invariant plane strain
(IPS) with the plate faces being the invariant planes. In
addition to a strain associated with the change in the
crystal structure accompanying the martensitic trans-
formation, the Bain strain and a lattice rotation, a shear–
type deformation (twinning in the case of the Ti–10V–
2Fe–3Al alloy) which leaves the crystal structure of
martensite unaltered, the lattice invariant deformation,
also takes place. The necessary input parameters for
the CRAB theory used in the present work are given in
Table I.

In accordance with the experimental results of
Williams [15], the lattice invariant deformation is
adopted to take place by twinning on{111}f.c.o.⇔
{110}b.c.c. planes. Following the procedure of Bowles
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TABLE I I Crystallographic data for the b.c.c.→f.c.o. martensitic transformation in Ti–10V–2Fe–3Al (wt.%) associated with the [100]b.c.c. ⇔
[100]f.c.o., [010]b.c.c. ⇔ [0.5.5]f.c.o., [001])b.c.c. ⇔ [0 .5 .5]f.c.o. lattice correspondence and [.707107.707107 0]b.c.c.(.682173− .682173.263213)b.c.c.
lattice invariant shear (LIS): IPS – invariant phase strain, see Appendix A for details

Variant IPS Plane IPS Shear IPS Shear
Number Normaln IPS Directionu IPS Magnitudeg Directionm Magnitudeγmt LIS Magnitudev

1

 .744870
−.306356
.592552

 −.676145
−.315933
.665743

 −.058691
−.028136
.059231

 .088003

.0880013 .053026

2

 .643119
.329285
−.691546

  .773458
.329285
−.691546

 −.067364
.026054
−.050242

 .087983

3

 .306382
−.744944
.592598

 .315895
.676083
.665691

 .028133
.058685
.059227

 .087995

.0880010 .161009

4

.329237
.643033
.691472

  .292025
−.773553
.562424

  .026057
−.067373
−.050247

 .087994

and Mckenzie [16], the twinning direction and its mag-
nitude are determined, Table I. The CRAB theory
yielded 48 variants of martensite. Four of these 48
variants corresponding to the [100]b.c.c.⇔ [100]f.c.o.,
[010]b.c.c.⇔ [0 .5 .5]f.c.o., [001]b.c.c.⇔ [0 .5 .5]f.c.o. lat-
tice correspondence and the [.707107.7071070]b.c.c.
(.682173−.682173.263213)b.c.c. lattice invariant (twin-
ning) shear are given in Table II.

3.2. Evolution equation for transformation
resistance

Using quantitative metallography and image analysis of
partially transformed Ti–10V–2Fe–3Al, the following
relations for the change in the martensite plate volume
and the plate aspect ratio have been obtained in our
ongoing work [17]:

vp

(∑
β

f β
)
= 4.5× 103∑

β f β + 0.09
(µm3) (27)

and

cp

rp

(∑
β

f β
)
= 0.2− 0.01∑

β f β + 0.08
(28)

Equations 27 and 28 are used to construct the evolution
equation for the transformation resistance, Equation 21.

The remaining model parameters for the Ti–10V–
2Fe–3Al alloy are summarized in Table III.

TABLE I I I V alues of the material parameters for Ti–10V–2Fe–3Al
(wt.%) used in the implementation of the constitutive model

Parameter Unit Value Reference

µ GPa 58.0 [7, 8]
ν No unit 0.3 [7, 8]
α No unit 0.84 [7, 8]
σ0 J/m2 0.35 [7, 8]
% mol/m2 3.01× 10−5 [7, 8]
Vm m3/mol 8.98× 10−6 [7, 8]
1g0 J/mol 700 [7, 8]

Figure 2 A schematic of a circular parent–phase grain of radiusrg con-
taining an oblate–spheroidal martensite plate of radiusr αp and semi–
thicknesscαp .

3.3. Finite element simulation of
stress–assisted martensitic
transformation under different
stress and strain states

To determine the effect of stress and strain states on
the evolution of martensite and the shape of the cor-
responding equivalent stress–equivalent strain curve,
finite element simulations of uniaxial and plane–strain
compression and bi–axial tension of the polycrystalline
Ti–10V–2Fe–3Al alloy are carried out. In each case, a
finite element mesh consisting of 343 eight–node three–
dimensional elements (ABAQUS designation C3D8) is
used. The initial mesh is shown in Fig. 3a. Each el-
ement is taken to represent a grain (a single crystal)
and the initial orientation of each element is set at ran-
dom. In the case of uniaxial compression, the top and
the bottom faces of the finite–element mesh are con-
strained to remain planar during deformation, made free
of shear tractions and subject to displacement bound-
ary conditions consistent with a true axial strain rate
of –0.001 s−1. In the case of plane–strain compression,
the same boundary conditions are applied to the top and
to the bottom of the mesh as in the case of uniaxial com-
pression. In addition, however, no strain normal to the
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Figure 3 Initial finite element mesh containing 343 eight–node three–
dimensional elements: (a) initial mesh, (b) mesh after uniaxial compres-
sion, (c) mesh after plane–strain compression and (d) mesh after bi–axial
tension. Meshes in (b)–(d) correspond to the equivalent plastic strain of
0.05.

front and the back faces of the mesh are allowed. In the
case of bi–axial tension, no constraints are imposed on
the top and the bottom faces of the mesh. However, the
left/right and front/back faces are constrained to remain
planar and subject to displacement boundary conditions
consistent with a normal strain rate of 0.0005 s−1. De-
formed meshes corresponding to the equivalent strain
of 0.05 obtained under uniaxial compression, plane–
strain compression and bi–axial tension are shown in
Fig. 3b–d, respectively.

To carry out a finite element analysis of the stress–as-
sisted martensitic transformation, the crystal–plasticity
materials constitutive model and the material state in-
tegration procedure, developed respectively in Sec-
tions 2.1 and 2.2, are implemented in ABAQUS Stan-
dard finite element program [18]. Specifically, the
model is implemented in a User Material Subrou-
tine (UMAT) within which the Cauchy stress and all
the state variables (the deformation resistance and the
volume fraction of each martensite variant) are updated
for the prescribed total deformation gradient at the end
of a time step. In addition, the material Jacobian is com-
puted within UMAT using a finite difference perturba-
tion procedure [9]. The material Jacobian is required
in the global Newton scheme of ABAQUS/Standard
in order to achieve an accurate assessment of the
kinematics.

In order to simplify the calculations and reduce the
computational time, only 12 out of 48 variants of
martensite are considered in the present work. The 12
variants are chosen in such a way that if two or more
variants have comparable orientations of their habit
plane and/or direction of shear only one is retained in
the analysis. In addition, only one variant of marten-
site is allowed to be operational within a given grain at
any time step. This was done in order to mimic the ac-
tual mechanism of martensitic transformation in which

individual plates are formed within a grain at different
times, and a new plate is generally formed only after the
plate which was operational in the last time increment,
stops growing. This procedure allows the prediction
of the evolution of the average martensite plate volume
with the progress of martensitic transformation. That is,
if the same martensite variant is found to be operational
over a number of consecutive time increments within a
given grain, it is assumed that within this time period
the transformation within that grain occurs by the nu-
cleation and growth of the same martensite plate. The
variant of martensite which is operational within each
time increment is defined as the one which is character-
ized by a maximum rate of increase of the martensite
volume fraction, ḟ α.

To verify texture development during the stress–
assisted martensitic transformation under the three de-
formation modes discussed earlier, the orientation of a
specific set of crystallographic planes and directions in
all martensite variants at all integration points of each
grain is determined in the current configuration. This is
done by applying the following transformation opera-
tion to the crystal plane normalncp={110}b.c.c. and the
crystallographic directionmcp=〈111〉b.c.c. in the par-
ent phase which correspond to a close–packed plane
and close–packed direction in martensite:

nαcp =
F∗−T(τ )RαPα−1ncp

[det(F∗−T) det(Pα−1)]
(29)

and:

mα
cp(τ ) = F∗−T(τ )RαPαmcp

[det(F∗−T) det(Pα)]
(30)

for theα–variant of martensite. Next, the correspond-
ing (equal–area projection) pole figures are generated
by using the volume fractions of martensite variants to
weigh their contributions to the “signal” intensity. This
was done by identifying in each grain the three variants
of martensite which have the largest volume fraction.
The volume fractions of these variants are prorated so
that their sum becomes equal to 1.0. The (0,1) range is
next divided in five segments each 0.2 wide and each
segment numbered as: segment 1, 0–0.2; segment 2,
0.2–0.4; etc. Next, the prorated volume fractions of the
three variants are assigned a number consistent with a
corresponding segment number. For example, if the vol-
ume fraction of one of the variants is 0.35, that variant
is assigned a number 2. The numbers assigned repre-
sent the number of closely spaced+ symbols used to
represent the contribution of the variant in question to
the pole figure.

A comparison between the computed and the exper-
imental [13] uniaxial compression equivalent stress–
equivalent strain curves for Ti–10V–2Fe–3Al are
shown in Fig. 4. Following the procedure of Grujicic
and Sankaran [7], the original experimental data were
revised to remove the effect of 10 vol.% of a second
phase. Based on the results shown in Fig. 4, the model
developed here seems to account reasonably well for the
experimentally observed equivalent stress–equivalent

4641



Figure 4 A comparison of the equivalent stress–equivalent strain curve
for uniaxial compression predicted by the model with the experimental
results of Dueriget al. [13].

strain relationship in the early stages of deformation
including the stage when the material displays a nor-
mal decreasing rate of strain hardening and when the
material begins to develop an unusual increasing rate
of strain hardening. However, at the later stages of de-
formation the two equivalent stress–equivalent strain
curves begin to diverge. This can be readily understood
since the proposed model considers the stress–assisted
martensitic transformation as a sole mechanism of in-
elastic deformation. Therefore, at the later stages of de-
formation, martensitic transformation proceeds by the
activation of martensite nuclei of low potency. Con-
sequently, the (calculated) equivalent stress needed to
the maintain martensitic transformation continues to
increase with the equivalent strain. In the actual ma-
terial, on the other hand, slip and/or twinning in the
parent phase are available as potential mechanisms for

Figure 5 Effect of deformation mode on the equivalent stress–equivalent strain and volume fraction of martensite–equivalent strain curves as predicted
by the model.

inelastic deformation. Consequently, when the stress
required to maintain the operation of martensitic trans-
formation becomes too high, slip and/or twinning take
over as the dominant modes of inelastic deforma-
tion. As a result, one observes a normal “parabolic–
type” hardening characterized by a decreasing rate of
strain hardening in the later stages of inelastic defor-
mation.

The equivalent stress–equivalent strain curves and
the martensite volume fraction–equivalent strain curves
for the three deformation modes discussed above are
shown in Fig. 5a and b, respectively. The results shown
in these figures can be summarized as following:

– For each mode of deformation, a normal strain–
hardening behavior characterized by a decreasing rate
of stain hardening is observed at low values of the equiv-
alent strains. This behavior is generally attributed to the
combined effects of strain hardening and lattice rotation
accompanying the inelastic deformation.

– At the later stages of deformation, an unusual “up-
ward” hardening characterized by an increase in the
rate of strain hardening with the equivalent strain is ob-
served. This finding is consistent with the fact that as the
transformation proceeds, nucleation sites of a progres-
sively lower potency (a higher initial transformation
resistance, Equation 26) are activated.

– The equivalent stress–equivalent strain curve is
significantly affected by the mode of deformation.
Specifically, higher equivalent stress values are ob-
served in the cases of plane–strain compression and bi–
axial tension in comparison to the one found in the case
of uniaxial compression. This finding is consistent with
the fact that, since the transformation volume change
is negative in Ti–10V–2Fe–3Al, a positive (tensile) hy-
drostatic stress opposes while a negative (compressive)
hydrostatic stress assists the martensitic transforma-
tion. Therefore, lowest levels of the equivalent stress
are seen in the case of uniaxial compression where the
hydrostatic stress is most negative.
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– For each of the three modes of deformation there
is a monotonic, approximately linear increase in the
volume fraction of martensite with the equivalent plas-
tic strain, Fig. 5b. This finding is consistent with the fact
that the martensitic transformation is the sole mode of
inelastic deformation considered and that the transfor-
mation is irreversible.

– The extent of martensitic transformation at a given
level of the equivalent strain is dependent on the de-
formation mode, Fig. 5b. This dependence is, however,
significantly weaker than the equivalent strain depen-
dence of the equivalent stress, Fig. 5a. Nevertheless, the
relative position of the three curves in Fig. 5a and b is
identical (i.e. the curves corresponding to uniaxial com-
pression are at the bottom, etc.). This finding suggests
that the highest level of stress biasing of the marten-
sitic transformation is achieved in the case of uniaxial
compression.

– The cases of uniaxial compression and bi–axial
tension can be considered as ones in which the strain
state of the entire computational domain are very sim-
ilar at a given level of the equivalent strain. Hence, the
observed differences in the equivalent stress–equivalent
strain curves and the martensite volume fraction–
equivalent strain curves can be attributed almost ex-
clusively to the effect of stress state (more specifically
to the effect of the hydrostatic stress).

– The equivalent stress–equivalent strain and the vol-
ume fraction of martensite–equivalent strain curves
for plane–strain compression lie generally above the
ones for uniaxial compression and bi–axial tension.
If the sign and the magnitude of the hydrostatic
stress were the only factors affecting the progress of
martensitic transformation, one should expect these
curves for plane–strain compression (moderate neg-
ative hydrostatic stress) to be located between the
corresponding curves for uniaxial compression (large
negative–hydrostatic stress) and bi–axial tension (posi-
tive hydrostatic stress). Since this conjecture is not sup-

Figure 6 {111}b.c.c. (equal area projection) pole figures showing the initial “isotropic” texture in the 343–grain polycrystal.

ported by the experimental results, it appears that the
strain state (different in plane–strain compression rela-
tive to uniaxial compression and bi–axial tension) also
has an important effect on the progress of martensitic
transformation.

The (equal–area projection) (110)b.c.c.–type pole fig-
ures for the initial 343–grain polycrystalline material
are shown in Fig. 6. The corresponding (equal–area
projection) (111)f.c.o.–type pole figures at the equivalent
strain of 0.05 in the partially transformed Ti–10V–2Fe–
3Al under uniaxial compression, plane–strain compres-
sion and bi–axial tension are shown in Figs 7–9, respec-
tively. While no experimental data are currently avail-
able to help establish the validity of the computed pole
figures, it should be noted that the texture obtained in
uniaxial compression and bi–axial tension are very sim-
ilar to each other and substantially different from the
texture obtained in plane–strain compression. This find-
ing is consistent with our previous observation that uni-
axial compression and bi–axial tension result in similar
macroscopic strain states. It should be also noted that
for easier comparison with their experimental counter-
part the discrete grain pole figures shown in Figs 6–9
should be transformed into probability density plots.
This could be done using DIOR program contained in
the popLA software package [19].

The effect of the extent of martensitic transforma-
tion on the average volume of the martensite plate in
Ti–10V–2Fe–3Al undergoing the b.c.c.→f.c.o. stress–
assisted martensitic transformation in uniaxial com-
pression is shown, as a band, in Fig. 10. The solid curve
shown in the same figure corresponding to the exper-
imentally observed relationship, Equation 32. The re-
sults shown in Fig. 10 indicate a fair agreement between
the predicted and the measured results. Similar aver-
age martensite plate volume–equivalent strain bands
are obtained for the other two modes of deformation
and hence are not shown.
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Figure 7 {111}f.c.o. (equal area projection) pole figures for the partially–transformed Ti–10V–2Fe–3Al deformed to an equivalent strain level of
ε= 0.05 in uniaxial compression.

Figure 8 {111}f.c.o. (equal area projection) pole figures for the partially–transformed Ti–10V–2Fe–3Al deformed to an equivalent strain level of
ε= 0.05 in plane–strain compression.
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Figure 9 {111}f.c.o. (equal area projection) pole figures for the partially–transformed Ti–10V–2Fe–3Al deformed to an equivalent strain level of
ε= 0.05 in bi–axial tension.

Figure 10 Effect of the extent of martensitic transformation on the av-
erage volume of the martensite plate.

4. Conclusions
Based on the results obtained in the present work the
following conclusions can be drawn.

– By combining the basic theories for crystallogra-
phy, thermodynamics, kinetics and statistics of marten-
sitic transformation with the theory of crystal plasticity,
a materials constitutive model for the stress–assisted
martensitic transformation suitable for implementation
in a finite element formulation can be developed.

– While more experimental data are needed to
validate the model, preliminary results suggest that the
model can reasonably well account for the measured
uniaxial–compression equivalent stress–equivalent
strain relation associated with the stress–assisted
martensitic transformation in Ti–10V–2Fe–3Al.

– The model suggests that the evolution of marten-
site and the corresponding equivalent stress–equivalent

strain curves are affected both by the applied stress
state (primarily the sign and the magnitude of the
hydrostatic stress) and by the strain state.

– The stress–assisted martensitic transformation
in Ti–10V–2Fe–3Al results in the formation of the
texture in the transformed materials. The nature of the
texture appears to be mainly controlled by the imposed
macroscopic strain state.

– The proposed model correctly predicts the experi-
mentally measured decrease of the average martensite
plate volume with the extent of transformation.

Appendix A: Single lattice–invariant shear
CRAB theory of martensite crystallography
The overall deformation accompanying martensitic
transformation of parent phase into a single variant of
martensite is defiend as an invariant plane strain (IPS)
G of magnitudeg on a plane with a unit normaln in a
unit directionu:

G = I + gu⊗ n. (A1)

G can be multiplicatively decomposed in a lattice ro-
tation R, a (symmetric) lattice strainP and a lattice
invariant shearV as:

G = RPV. (A2)

R can be eliminated from Equation A2 using the iden-
tity, RTR= I , to yield:

GTG = VTP2V = Q (A3)

or

X = GTG−Q = 0. (A4)

SinceX is symmetric, substitution of Equation A1 in
Equation A4 yields six algebraic equations in the form:

Xii = g2n2
i + 2gui ni + 1− Qii = 0 (A5a)
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and

Xi j = g2ni n j + g(ui n j + u j ni )− Qi j = 0 (i 6= j ).

(A5b)
wherei, j = 1, 2, 3.

Equations A5a and A5b can be solved in the follow-
ing way for the five unknownsg, n1/n3, n2/n3, u1/u3
and u2/u3, a single unknown parameter (the mag-
nitude of the lattice invariant shear,v) contained in
Q. First, substitution of Equation A5a in the trace
X11+ X22+ X33 of X gives:

g2 = Q11+ Q22+ Q33− 2(detG)− 1, (A6)

where detG= 1− εmt
n is numerically equal to the ratio

of the volumes of the corresponding cells of martensite
and the parent phase. Equation A6 yields two values
of g equal in magnitude and opposite in sign. Next, if
Equations A5a and A5b are substituted into the expres-
sion 2ni n j Xi j − n2

j Xii − n2
i X j j = 0, one obtains the

following three quadratic equations:

(1− Qii )n
2
j + 2Qi j ni n j + (1− Qj j )n

2
i = 0

(1 6= j = 1, 2, 3). (A7)

In general, Equations A7 yields two solutions for the
invariant plane strain unit normaln. Inspection of Equa-
tion A5a shows that there is one IPS directionu for each
g/n pair and that changing the sign ofg simply changes
the sign ofu and, hence, does not yield a distinct solu-
tion. Thus, for eachQ Equations A5, A6 and A7 yield
two solutions for the invariant plane strainG.

Q can be determined by first inverting Equation A3
to obtain:

G−1GT−1 = V−1P−1PT−1VT−1 = Q−1 (A8)

If Equation A1 is inverted to yield:

G−1 = I − g(detG)−1u⊗ n (A9)

and Equation A9 plugged in Equation A8 one obtains:

Xii = (detG)−2g2u2
i − 2(detG)−1gni ui

+ 1− Q−1
i i = 0 (i = 1, 2, 3) (A10a)

and

Xi j = (detG)−2g2ui u j − (detG)−1g(ni u j + nj ui )

− Q−1
i j = 0 (i 6= j = 1, 2, 3). (A10b)

The trace ofX can be constructed and rearranged to
yield:

(detG)−2g2 = Q−1
11 + Q−1

22 + Q−1
33 − 2(detG)−1− 1.

(A11)
Elimination ofg2 from Equations A6 and A11 results
in the following relation forQ:

(detG)−1(Q11+ Q22+ Q33− 1)

= (detG)
(
Q−1

11 + Q−1
22 + Q−1

33 − 1
)
. (A12)

The lattice invariant shearV of magnitudev on a plane
of the unit normalo in the unit directionl is given as:

V = I + νl ⊗ o (A13a)

and

V−1 = I + vl ⊗ o. (A13b)

Substitution of Equations A13a and A13b respectively
in Equations A3 and A8 and then in Equation A12
yields the following quadratic equation forv:

v2{(detG)−1(l · P2l)− (detG)(o · P−2o)}
+ 2v{(detG)−1(o · P2l)+ (detG)(l · P−2o)}
+ {(detG)−1tr (P2)− (detG) tr(P−2)− (detG)−1

+ (detG)} = 0 (A14)

where tr(P2)= P2
11+ P2

22+ P2
33+ 2P2

12+ 2P2
23+ 2P2

31
and tr(P−2) is defined in an analogous way. For each
l/o pair, Equation A14 gives two values forν which,
in turn, via Equation A13 yield two possible lattice in-
variant shearsV and, hence, two possible values forQ.
OnceG is determined, the IPS shear unit directionm
and the shear magnitudeγ tr are determined as:

γ trm = gu− (detG)n. (A15)

In summary, the basic crystallographic features of a
martensitic transformation can hence be determined us-
ing the following procedure:

1. Lattice parameter and lattice correspondence of
the parent phase and martensite are first established,
and the pure strainP and the martensite/parent phase
volume ratio (detG) calculated.

2. The unit plane normalo and the corresponding
unit shear directionl for the lattice invariant shearV
are selected using the available experimental data.

3. det(G), P, o and l are substituted into Equa-
tion A14 to obtain the magnitude of the lattice invariant
shearv.

4. v is substituted in Equation A13 to obtainV.
5. P andV are substituted in Equation A3 to obtain

Q.
6. detG andQ are next substituted in Equation A6

to obtaing.
7. Q is substituted in Equation A7 to obtainn.
8. g, n and Q are substituted in Equation A5 to

obtainu.
9. g,n andu are substituted in Equation A1 to obtain

G.
10. γ tr andm are determined using Equation A15.

In general, for each combination of det(G), P, o and
l, there are two values ofν and four values forG.

Acknowledgements
This material is based upon work supported by the Na-
tional Science Foundation under grant number DMR–
9906268 and CMS–9531930 and by the U. S. Army

4646



Research Office under grant number DAAH04–96–
1–0197. The authors are indebted to Drs. Bruce
A. MacDonald and Daniel C. Davis of NSF and
Dr. Kathryn V. Logan of ARO for continuing interest in
the present work. The authors are also indebted to Pro-
fessor Surya Kalidindi for an inspiring discussion. The
support of the office of High Performance Computing
Facilities at Clemson University is acknowledged.

References
1. G. B. O L S O N, K . T S U Z A K I and M . C O H E N, Materials

Research Symposium Proceedings57 (1987) 129.
2. A . G. E V A N S andR. M . C A N N O N, Acta Met.34 (1986) 761.
3. G. B. O L S O N, in Sagamore Army Materials Research Conference

Proceedings, 1987, edited by G. B. Olson, M. Azrin and E. S. Wright,
p. 3.

4. M . G R U J I C I CandP. D A N G, Mater. Sci. Eng.A224(1997) 187.
5. B . B U D I A N S K Y , J. W. H U T C H I N S O N and J. C.

L A M B R O P O U L O S, Int. J. Solids Structures19 (1983) 337.
6. C. L . H O M andR. M . M CM E E K I N G, ibid. 26 (1990) 1211.
7. M . G R U J I C I C andN. S A N K A R A N , ibid. 34 (1997) 4421.
8. Idem., Int. J. Fracture83 (1997) 337.
9. S. K A L I D I N D I , J. Mech. Phys. Solids46 (1998) 267.

10. R. J. A S A R O and A . N E E D L E M A N, Acta Met.33 (1985)
923.

11. G. B. O L S O N andA . L . R O I T B U R D, in “Martensite,” edited
by G. B. Olson and W. S. Owen (ASM International, The Materials
Information Society, 1992) p. 149.

12. I . W. C H E N, Y . H. C H I A O andK . T S U Z A K I , Acta Met.33
(1985) 1847.

13. T . W. D U E R I G, G. T. T E R L I N D E andJ. C. W I L L I A M S ,
Metal Trans. A11A (1980) 1987.

14. A . G. C R O C K E R, Journal de Physique, Colloque C4, Supplement
au no12 (1982) C4–209.

15. J. C. W I L L I A M S , in “Titanium Science and Technology, Vol. 3,”
edited by R. I. Jaffee and H. M. Burte (1973) p. 1433.

16. J. S. B O W L E S andJ. K . M A C K E N Z I E , Acta Met.2 (1954)
129.

17. Y . Z H A N G, PhD thesis in Progress, Clemson University, May
1999.

18. Abaqus Standard Theory Manual, Version 5.7, Hibbit, Karlson and
Sorensen, Inc., Providence, RI, 1997.

19. J. S. K A L L E N D , U. F. K O C K S, A . D. R O L L E T T and
J. R. W E N K, popLA: The Preferred Orientation Package from
Los Alamos, 1994.

Received 30 June 1999
and accepted 8 March 2000

4647


